Elevated Mutation Rate during Meiosis in Saccharomyces cerevisiae
نویسندگان
چکیده
Mutations accumulate during all stages of growth, but only germ line mutations contribute to evolution. While meiosis contributes to evolution by reassortment of parental alleles, we show here that the process itself is inherently mutagenic. We have previously shown that the DNA synthesis associated with repair of a double-strand break is about 1000-fold less accurate than S-phase synthesis. Since the process of meiosis involves many programmed DSBs, we reasoned that this repair might also be mutagenic. Indeed, in the early 1960's Magni and Von Borstel observed elevated reversion of recessive alleles during meiosis, and found that the revertants were more likely to be associated with a crossover than non-revertants, a process that they called "the meiotic effect." Here we use a forward mutation reporter (CAN1 HIS3) placed at either a meiotic recombination coldspot or hotspot near the MAT locus on Chromosome III. We find that the increased mutation rate at CAN1 (6 to 21 -fold) correlates with the underlying recombination rate at the locus. Importantly, we show that the elevated mutation rate is fully dependent upon Spo11, the protein that introduces the meiosis specific DSBs. To examine associated recombination we selected for random spores with or without a mutation in CAN1. We find that the mutations isolated this way show an increased association with recombination (crossovers, loss of crossover interference and/or increased gene conversion tracts). Polζ appears to contribute about half of the mutations induced during meiosis, but is not the only source of mutations for the meiotic effect. We see no difference in either the spectrum or distribution of mutations between mitosis and meiosis. The correlation of hotspots with elevated mutagenesis provides a mechanism for organisms to control evolution rates in a gene specific manner.
منابع مشابه
Effects of the RAD52 Gene on Recombination in SACCHAROMYCES CEREVISIAE.
Effects of the rad52 mutation in Saccharomyces cerevisiae on meiotic, gamma-ray-induced, UV-induced and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Both intra and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative mediu...
متن کاملMixed segregation and recombination of chromosomes and YACs during single-division meiosis in spo13 strains of Saccharomyces cerevisiae.
Diploid yeast strains, homozygous for the mutation spo13, undergo a single-division meiosis and form dyads (two spores held together in one ascus). Dyad analysis of spo13/spo13 strains with centromere-linked markers on five different chromosomes and on a pair of human DNA YACs shows that: (a) in spo13 meiosis, chromosomes undergo mixed segregation, namely some chromosomes segregate reductionall...
متن کاملMutations in CEN3 cause aberrant chromosome segregation during meiosis in Saccharomyces cerevisiae.
We investigated the structural requirements of the centromere from chromosome III (CEN3) of Saccharomyces cerevisiae by analyzing the ability of chromosomes with CEN3 mutations to segregate properly during meiosis. We analyzed diploid cells in which one or both copies of chromosome III carry a mutant centromere in place of the wild-type centromere and found that some alterations in the length, ...
متن کاملOuter plaque assembly and spore encapsulation are defective during sporulation of adenylate cyclase-deficient mutants of Saccharomyces cerevisiae
Sporulation in diploid cells homozygous for the cyr1-2 mutation of the yeast Saccharomyces cerevisiae was examined. This mutation causes a defect in adenylate cyclase and temperature-sensitive arrest in the G1 phase of the mitotic cell cycle. The cyr1-2/cyr1-2 diploid cells were able to initiate meiotic divisions, but produced predominantly two-spored asci at the restrictive temperature. Temper...
متن کاملGenome Dynamics of Hybrid Saccharomyces cerevisiae During Vegetative and Meiotic Divisions
Mutation and recombination are the major sources of genetic diversity in all organisms. In the baker's yeast, all mutation rate estimates are in homozygous background. We determined the extent of genetic change through mutation and loss of heterozygosity (LOH) in a heterozygous Saccharomyces cerevisiae genome during successive vegetative and meiotic divisions. We measured genome-wide LOH and ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2015